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THERMAL THEORY OF A LAMINAR FLAME FRONT NEAR A 
COLD WALL 

By THEODORE VON K A R M A N 1 AND GREGORIO MILLAN2 

The influence of a cold wall on the shape of a 
laminar flame front is important for the interpre
tation of many phenomena connected with the 
propagation of flames in tubes or between walls, 
such as quenching, etc. 

The present investigation is restricted by the 
fundamental assumptions of the thermal theory of 
combustion. Therefore diffusion between the vari
ous species is neglected and also the possible effect 
of a wall on breaking up the chain reactions. Then 
the effect of the wall in general is twofold: it modi
fies the flow by friction and the temperature dis
tribution by heat conduction. For most cases the 
phenomenon is complicated by the fact tha t the 
frictional effect extends considerably ahead of the 
flame. Existence of a secondary motion caused by 
the flame front is another frequent complicating 
factor. The authors have tried to find a case where 
these difficulties do not occur. They consider the 
case of a flame progressing in a tube of large di
ameter, filled with an unburned gas mixture; in 
this case it may be assumed that the one dimen
sional theory of the laminar flame front can be 
applied, with the exception of a domain near the 
wall in which approximately two dimensional flow 
can be assumed. The problem then is to compute 
the conditions near the wall. As there is no velocity 
difference between the unburned gas mixture and 
the wall a t a sufficient distance ahead of the flame, 
the effect of the wall friction is restricted to the 
region immediately upstream of the flame front. 

The same assumption was used by B. Lewis and 
G. von Elbe in their t reatment of the quenching 
problem in their book, "Combustion, Flames, and 
Explosion of Gases" (1). They successfully estab
lished useful dimensional correlations between 
characteristic quantities of the quenching, blow off 
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and flash back processes. On the other hand, there 
are also successful a t tempts to explain quenching 
on the basis of the pure diffusion theory considering 
the absorption of activated particles near the wall 
(2). The present paper cannot bring about a de
cision between the two different methods of ap
proach; bu t the authors believe tha t by introduc
tion of the regular computation methods of 
Aerothermodynamics they made some progress 
toward the reduction of the number of arbitrary 
assumptions, if they can be avoided. 

Instead of a laminar progressing wave, the 
authors consider stationary flow relatively to a 
flame front a t rest. Then one has to assume tha t 
the wall is moving with a speed equal to the normal 
combustion velocity of the gas mixture. The 
equations for two dimensional steady flow with 
viscosity, heat conduction and chemical reaction 
are the following: 
(a) Continuity equation 
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(c) Energy equation 

dH , dH dp , dp , 4 [/du\2 , / d A 2 , 3 (du , d A 2 dwdw" 
pM^ + p V = M^ + ^ + 3 M L w + U J + 4 U + ^J ~^_ 

dx\dx/ dy \ dy ) 

In these equations p, p and T denote pressure, 
density and absolute temperature of the gas mix
ture relatively, H the total (thermodynamic and 
chemical) enthalpy per unit mass of the mixture, 
fi the viscosity coefficient and X the coefficient of 
heat conduction; finally u and v are the compo
nents of the flow velocity in the x and y directions 
which are taken parallel and normal to the wall 
respectively. 

For simplicity's sake we neglect the possible 
changes in the number of molecules during the 
reaction, so that the gas mixture can be con
sidered as an ideal gas with the average gas con
stant Rg. Furthermore we do not enter into the 
details of the chemical reaction, but assume that 
the chemical enthalpy Hc of the mixture can be 
written in the form 

Hc = -qt 

where q is the heat release per unit mass of the gas 
mixture due to the reaction and € is a chemical 
parameter, the percentage of the end product of 
the reaction. With these assumptions, the total 
enthalpy can be written in the following form: 

H = CPT - qt (4) 

where the sign Cp denotes the specific heat of the 
mixture at constant pressure taken as constant. 

Our computations are carried out for a so-called 
first order reaction, whose rate follows the Ar-
rhenius law. In this case the chemical parameter is 
determined by the equation 

= KTOPO —f- exp ^ - ^ J , 

where To and po denote the initial absolute tem
perature and density of the mixture, A is the ac
tivation energy and if is a constant of the reaction. 

In principle, equations (1) to (5) together with 
the gas equation and appropriate boundary con
ditions determine the problem. I t is easily seen, 
however, that due to the complexity of the equa
tions, there is no hope to solve such a problem in 
the exact way. 

In accordance with the usual theory of the 
laminar flame front, we assume that the pressure 
changes in the gas are small. In other words we 
consider deflagration at almost constant pressure. 
In this case we may neglect in the energy equation 
the work done by the viscous forces and that due to 
the small variations of the pressure. Then one ob
tains the following simplified equation for (3) 

n dT . „ dT 
PuCp- + PvCp-

= ±(^J) + ±(X
dl) (6) 

da; \ dx ) dy \ dy / 

+ pq{UTx+Vdy) 
The boundary conditions are the following: 
At the wall (y = 0) and far ahead upstreams 
( * - - « ) : 

T = To, p = po, u = u0, v = o, e = o 

where u0 is the normal combustion velocity. 
At infinite distance from the wall (y = + °°) the 

solution of the system of equations (1), (2a), (2c), 
(5) and (6) has to approach the solution known 
from the one dimensional theory of the laminar 
front. 

Hence for y = + » , v = 0 and equation (6) 
yields: 

n dT d (. dT\ de . 
puCpdx- = Tx{Xdz-) + pUqTx> ( 6 a ) 

where (pM)!/=al = m, a constant. Also we want to 
consider \ as constant3. 

I t is useful to introduce a characteristic lenght I 
of the problem which clearly appears in the energy 
equation (6a). Such length is given by the formula 

po Ug Cp 

Using this length we introduce non-dimensional 
variables for the coordinates * and y and also a 

3 Such a solution has been given by the authors in 
their paper The Thermal Theory of Constant Pressure 
Deflagration (Biezeno Anniversary Volume, Delft, 1953). 
The solution given in that paper is used for the numeri
cal computations in the present paper. 
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non-dimensional variable for the temperature by 
means of the following relations: 

x = Ig, y = lv, T = T,6 

where Tf is the adiabatic final temperature of the 
gas mixture. We also note that in the case of con
s tant pressure deflagration the heat release q is 
equal to 

q = C ( 7 7 - r 0 ) = CPTf(l - fl,) 

I n our paper quoted above, in order to avoid a 
known difficulty to satisfy the boundary condition 
at the so-called cold boundary, we assume the 
existence of a definite ignition temperature. The 
same assumption is used in this paper. Then there 
are two domains. The first one in which the tem
perature is inferior to the ignition temperature 7 \ 
(the corresponding value of 6 is denoted by 0.) and 
the reaction rate is assumed to be zero. In this 
domain the problem is reduced to one of pure heat 
conduction and convection. The second domain in 
which the chemical reaction has to be taken into 
account is characterized by the condition T > 7 \ . 

First let us consider the case tha t the character
istic length which determines the width of the so-
called heating zone is very small, and the rate of 
reaction is sufficiently large so that the width in 
which the burning takes place can be also con
sidered as infinitely small. I n this limiting case we 
may assume an infinitely thin laminar flame front, 
coinciding with the line x — 0, which reaches to the 
wall. Then we have to assume tha t the temperature 
is equal to the initial temperature everywhere for 
x < 0 and it jumps a t the line x = 0 to the value 
Tf, i.e. the adiabatic combustion temperature. 

The problem is now to determine the tempera
ture distribution behind the front, so tha t the 
temperature a t the wall keeps its value T = To • 

This problem has the character of the boundary 
layer problems occurring in Fluid Mechanics. One 
can find a simple solution under the assumptions 
that the mass flow between parallel lines y = con
stant does not vary with x, and that the heat con
duction in the y direction is large in comparison to 
the heat conduction in the x direction. For this 
case the continuity equation is satisfied by v = 0, 
pu = m = const, and the energy equation takes the 
simple form 

dT 
mCv 

dx 
= \ 

d2T 

dy*' 

dd _ f)'0 

(8) 

(8a) 

The solution of this equation satisfying the 
boundary conditions is given by 

= flj + (1 
2 f>> 

o) —J=- \ 
W ( V P 

e~l dz. (9) 

The corresponding isotherms are the parabolas 
shown in figure 1. We will assume that this solution 
is valid a t distances from x = 0 y — 0, large in 
comparison with I. Then the problem is to s tudy 
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FIG. 1 

FIG. 2 

what happens in a domain comparable with the 
characteristic length, i.e. the distortion of the flame 
front near the wall. 

I n this paper the authors restrict the computa
tions to the domain x > 0 and determine by 
numerical calculations a temperature distribution 
satisfying the following conditions shown schemati
cally in figure 2. 

(a) the nondimensional temperature d on £ = 0 
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and rj > -qe is equal to 0,-, i.e. the ignition tempera
ture of the gas mixture. 

(b) on the line AB and for 0 < £ < £, , i) > t\e 

the temperature is determined by the solution of 
the one dimensional problem. The final tempeia-
ture theoretically would be reached only at infinite 
distance. However, the point B, i.e. the values of 
£/ and t\,, were chosen in such a way that at B the 
deviation from the final temperature as computed 
from the one dimensional theory is smaller than 
><! per cent. 

At the same time the parabola BD corresponds 
to the isotherm $ = .995 according to the approxi
mate theory indicated above (fig. 1). 
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(c) I t is assumed that for £ > £, the latter theory 
gives a proper approximation. 

Then a solution was computed numerically for 
the rectangular domain OABC, in such a way that 
the temperature at CB is equal to the temperature 
distribution determined from the approximate 
theory, and along AB is determined by the one 
dimensional theory. In this computation, heat 
conduction in both directions was taken into 
account. Concerning the heat convection, the 
assumption of constant mass flow was used. In 
fact it is true that the mass flow has its initial 
value m immediately at the wall and also outside 
of the boundary layer. The assumption of constant 
mass flow also appears justified at larger distances 
from the origin. I t is the belief of the authors, how
ever, that for a more exact theory this assumption 
should be dropped and a correction calculated. 

Using the nondimensional variables and the 
assumptions made above, the equations (5) and 
(6) take the form 

de doKl 1 — e n-ejd 

ua e e ' 
(5a) 

de 
d£ = = ^ + ^ + ( 1 _ f>)de (6b) 

where 8a is the non-dimensional activation tem
perature da = A/RTf. 

Instead of integrating the partial differential 
equations (Sa) and (6b) we apply a method similar 
to the one introduced by the senior author in the 
theory of boundary layers (Karman's integral 
equation), and deduce the following integral rela
tion, expressing the balance of heat conduction, 
heat convection and heat released between neigh
boring sections £ and £ + d£: 

d a 
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0o f'de drj 

In that equation a is defined by the formula: 

« = ^ ^ r - f ' (e - 0o) dv (11) 
"e — P0 Ve •>() 

de is the non-dimensional temperature given by the 
one dimensional theory as function of £, and t] < is 
the value of ?? corresponding to the ignition 
temperature. 

In order to integrate this equation we assume a 
one parameter family of temperature distributions: 

- ft. 1 -o-o !/(!-«) 
(12) 

The value of the exponent in equation (12) 
follows from the definition (11) of a. 

The values for a and da/d£ at £ = £/ are chosen 
in such a way that continuity is conserved between 
the two solutions used for £ < £/• and £ > £/ both 
as far as the values of the total flux of enthalpy and 
its derivative with respect to £ are concerned. 

The integration of equation (10) was carried out 
by stepwise numerical calculation. The resulting 
temperature distribution is indicated in figure 3. 
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The obtained temperature distribution corre
sponds to that expected by qualitative consider
ations. The isotherm corresponding to the ignition 
temperature (9 = di) is almost straight until it is 
rather suddenly deflected into the direction 
parallel to the wall and finally joins the parabola 
obtained by the simplified theory. Taken exactly, 
some burning may yet occur in the range above the 
isotherm 6 = di also for £ > £/ bu t the calculation 
showed that the amount of unburned gas in this 
region is so small tha t the reaction can be assumed 
practically finished a t f = £ / . 

One undesirable feature of the solution is the 
following: if we calculate the amount of heat 
transferred through the line x = 0 in the sheet 
between J? = 0 and t] = ije we find that the hea t 
transferred by convection from the left side Jo 
the right side is slightly superior to the amount T3f 
heat transferred by conduction from right to left. 
Since we assume that the solution for values of 
t) > tje is identical to the solution of the one di
mensional problem, in the range t]e < r\ < °° the 
total amount of heat transferred from left to 
right equals tha t transferred from right to left. 
Thus we obtain a heat balance which does not 
provide heat energy for the heat transmission 
from the gas to the wall ahead of the front. This 
result shows that the assumption of constant mass 
flow cannot be exactly correct. If one drops, how
ever, this simplifying assumption, it is necessary 
to take into account the momentum equations 
and the problem becomes much- more complex. 

The width of the dead space for the example 
carried out in the paper is equal to about 1.25 times 
the characteristic length, provided we define the 
dead space as the gap between the wall and the 
isotherm corresponding to the ignition tempera
ture. In practical measurements the width of the 
gap between the wall and the luminous region is 
considered as dead space. 

Recently Mr. Kaskan4 carried out interesting 
experiments on combustion of methane, propane, 
and ethylene in air. He measured the dead space 
defined as the distance between the wall and the 
luminous border of the flame. The values obtained 
for stoichiometric mixtures compared with the 
characteristic length used in this paper are given 
in table 1. 

For the computation of the characteristic 
length, the data on normal combusion velocity 
given by M. Gerstein, 0 . Levine, and E. L. Wong 
were used (3). 

* The authors are indebted to Mr. W. E. Kaskan of 
the General Electric Company for having given them 
the data of his measurements before publication. 

Mr. Kaskan also observed that the dead space 
is in general considerably smaller than it was 
thought before, i.e. equal only about }{0 of the 
quenching distance instead of % to % of this 
quant i ty . 

However, perhaps, the most important conclu
sion from these recent experiments—at least from 
the viewpoint of the authors—is the fact that , ac
cording to table 1, the ratio between dead space 
and characteristic length appears to be almost 
independent of the nature of the gas used. This 
may indicate that the thermal conduction is the 
fundamental characteristic which determines the 
shape of the flame near a wall. This is the basic 
assumption of the theory developed in this paper. 

The absolute value of the width of the dead 
space computed in the example given in this 
paper is considerably smaller than tha t obtained 
in Kaskan's experiments. A close accordance 
cannot be expected, since the assumption on the 
law of the reaction rate used in the calculations 

TABLE 1 

Gas 8 / i/l 

mm 

.3 

.28 

.18 

mm 

.051 

.044 

.027 

5 9 
Propane 
Ethylene 

mm 

.3 

.28 

.18 

mm 

.051 

.044 

.027 
6.36 
6.66 

b = dead space. 

were rather arbitrary. The main reason for the 
discrepancy, however, may be the following: The 
solution used for £ > £/ was based on the assump
tion tha t the hea t conduction in the main flow 
direction is small in comparison with the heat 
conduction crosswise. One finds by direct compari
son of the respective heat amounts that , in order 
to satisfy this condition with fair approximation, a 
value for £/ should be chosen several times larger. 
I t is probable tha t if the numerical computation 
will be repeated using larger values for £/ , the 
discrepancy will be essentially reduced. 
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